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This paper contains the solution and analysis of a number of problems in 

the theory of gaseous jets. The first section discusses the question of 

a converging gaseous jet; the second considers flow past a plate under 

the assumption tha.t in front of the plate there exists a region of gas at 

zero velocity. In spite of their apparent diversity, these problems have 

a common property, namely, that the first problem is obtained from the 

well known problem of the jet flow of a gas from an infinite vessel by 

means of substituting the point of zero velocity at infinity by a whole 

unbounded region of stagnation; a similar stagnation region in the second 

problem is considered to be in front of the plate. 

The third section contains the solutions of a number of problems on 

the jet flow of a gas which were studied earlier by Zhukovskii for the 

case of an incompressible fluid. For the solutions of these problems we 

make use of new particular integrals of Chaplygin’s equation 

I. The problem of a contracting gaseous jet 

1. Let us consider a stream of gas, flowing with velocity V,; let us 

assume that the width of this stream, and also the density of the gas, 

are known. Let us assume further that, in its motion, the gas encounters 
t-&o straight walls, symmetrically disposed relative to its direction of 

motion, and including between them an angle 2X, and that a jet with free 

surfaces issues from the orifice formed by these two walls. Our problem 

consists in determining the entire motion of the gas by means of the 

methods described by Chaplygin [ 1 1 in his paper & gaseous jets. In what 

follows we adopt the notation of that paper for all the principal quanti- 

ties. 

Let us assume that the gas flowing from infinity has a velocity 

parallel to the positive direction of the x-axis; this axis is the line 

of symmetry of thb two guiding walls, and the origin of coordinates is 

taken at the point of intersection of this axis with the line joining the 

436 



On the theory of garcour jrtr 437 

ends of the walls, from which the gas jet emerges. Let us denote by Vi 
the constant velocity of the stream at infinity before its emmmter with 
the walls. ‘lhis is also the velocity of the gas particles on those strem- 
lines along which these particles move before striking the walls.+ let 
us, mreover, denote by V2 the velocity of the gas particles along the tm 
streamlines issuing from the inclined walls and bounding the jet directed 
along the positive axis of x. 

Adopting Chaplygin’s notation, we set 

Let us denote by p1 the density of the incident gas, and by pz the 
density of the gas in the remote parts of the emergeut jet. If WE call 
the width of the incident stream 2 I 1, and the width of the emergent jet 
at infinity 2 1 2, we shall then have 

PMl = Paw% (1.1) 

From Bernoulli s equation, written in the fon 

P = PotI 4 
we obtain the two relations: 

(1.2) 

If the axis of x delineates the 
then along the streamline A’B’C’D’ 
value q = pll,V ho > 0, and along 
the constant v J ue - q (Fig. 1). 

zero value of the stream function $, 
the function $ is equal to a constant 
the streamline A BCD it is equal to 

Fig. 1. 

‘Ihe function $, considered as a function of r and the angle of incli- 
nation 8 of the gas particle velocity to the axis of n, satisfies the 

l Translator’s Note: This refers to the two free streamlines A*# and 
AB inside the vessel. These free streamlines separate the moving stream 
from the stagnant fluid which fills the remainder of the vessel. 
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following equation: 

a 

{ 

27 a+ _ -- 
& (I _.)PL% + 

1-@P+WV_* 
27 (I- .)P+l aBa - (1.3) 

We find the integral of this equation subject to the relevant boundary 
conditions for those values of 8 

of the stream between A BCD and 

from zero to A, and the variable 

ditions for the determination of 

(Fig. 2): 

and z which correspond to the lower half 

the axis of x; here the angle 8 varies 

7 varies from f ‘Ihe boundary 

the function (IrtQ, ‘r )r &e 

con- 

written thus 

Fig. 2. Fig. 3. 

when T = 51 and for 0 <e <h the function +=--4 

when 0 =A and forTl<T<Ta the function 
when T 

JI=--u (1.4) 
‘72 and forA >0>0 . the function 4=--g 

when O=O and for-ca>T>q the function II,= 0 

Together with the function I/,@, r ) we will detenine the function 

We, I 1, the integral of equation (1.3), connected with the function 

r//(8, r ) by the relation 

+= $(Y--8) (1.5) 

The new function \p must satisfy the following boundary conditions 

(Fig. 3): 

when r = ~1 and for 0 < 0 <A the function Y = -(x-e) 
when B=A and for?<T<75t the function Y’=O 

when T = 92 and fork > 0 > 0 the function Y = - (A- e) 
when 0 = 0 and for Ta>T>Tl the function Y=O 

To determine the function I we find particular solutions of equation 

(1.3). This equation has a particular solution of the following form: 

Yn(9, T) = z,(r)siny9 (1.6) 

wheren is any integer greater than or equal to unity. The function vnce,r 1 
evidently satisfies the condition 

Y*(O,~)=Y,()C,t)=O 
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Ihe function za(r ) is the general integral of the equation 

d 
------I d7 { 

2~ % 

(1 -Q d7 I 

=SnSi-(2B+1)TZn_0 

1 2r (1 - ,p+l 
(l-7) 

Let us now construct a series of particular solutions of equation (1.7). 

Let us, however, first introduce the following notation: we will denote 

by z,,(r ) the integral of equation (1.7) satisfying the conditions 

Gil(%) = 0, 
dz,l @I) 
dr= 1 

and by rn2 (r ) wz will, denote the integral of equation ( 1.7) satisfying 
the conditions 

With this notation we can write 

zn (T) = cn1 Gal (4 + CM. %a 6) 

ubere Cn, and Cn2 are tare arbitrary constants. 

Let us now expand the function WI, r ) in the series 

and determine the constants C,,, Cm, from the following boundary conditions: 

Y(9, Tl) = -(A-6) for O<O<h, Y(0, Q)= -(A-g) for O<O<x 

Applying the theory of Fourier series, we obtain 

c,,=-?LL_, C 
2h 1 

zn z,h) 
--_- 

n1 - 
An znlW 

whence we find that 

Returning to formula (1. S), we find the strewn function: 

Using the formulas 

(l-8) 

we then find an expression for the velocity potential: 
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2. With the help of formulas (1.8) and (1.9), let us find a number of 
geometrical quantities relating to the dimensions and shape of the stream. 

First of all, let us calculate the distance b of the point B or B’ 
from the axis of the stream. 

We have the general fomla: 

hpplying this to the streamline Y = - q from the point A to the point 
B, we obtain 

Let us integrate this equation from the point A to the point B; taking 
into consideration the fomula 

we obtain 

(1.10) 

Let us now calculate the difference between the distances of the 
points E and C from the axis of the stream; denoting the distance of the 
&nt C from the axis of the stream by c, we get 

Making use of 

1a ay aF 
b--c= F;iTdT 

s 
71 

the formulas 

and expanding f 1.91, we obtain the following expression for b - c : 
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(1.11) 

Let us now develop a formula for the determination of the width of the 
jet going off to infinity. We have the following relation: 

Substituting therein for d y /a+ its value of sin e/G, and for 
a+/a e its value, found from formula (1.9), we obtain 

We notice that if we combine the formulas (l.lO), (1.11) and (1.12), 
then after cancelling similar tens we obtain an identity. Hence it 
follows, as indeed it should, that there is only one formula to determine 
1 2, namely, 

(1.13) 

Since 

and since for subsonic flows r 1 and r 2 < (28 + 1)-l, then 1, < I,. 

3. The formulas of the two foregoing subsections represent the complete 
formal solution of the. specified problem on gaseous jets. The solution 
obtained, however, is in a very abstruse form, and accordingly we now 
turn to the deduction of simple relations which will enable us to deter- 
mine the required dimensions, under the assumption that the velocities 
V and V are close to one another. Under this assumption the formulas 
&lo), k.11) and (1.12) can be reduced to a very simple form, by 
employing the transformations applied by Poincare 12 1 to the study of 
the propagation of radio waves. 

Let us consider the following functions of the variable index n: 

We notice that, by virtue of the relation 
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we can express the function f&((n) by means of the function fl(n) accord- 
ing to the formula 

Since the parameter n2 enters the equation (1.7) linearly, and the de- 
termination of the functions z (r ) and z (r ) obeys specially determined 
initial conditions, then acco&g to one%f Poincare’s theorems [ 3 I the 
functions z (r ) and z (r ) are entire functions of the variable n. Hence 
it follows %at the fu%.ion f (n) f (n), f3(n) and f,,(n) are meromrphic 
functions of the complex varl *akle A. $ r first problem consists in ex- 
panding these functions in series as regards the principal parts. 

Let us first consider the function fl(n) and find its poles. ‘Ihe affix 
ni of a pole is a value of n for which the function zai(r 2) vanishes; but 
according to its construction the function z,,(r ) also vanishes when r = r 1. 
Gnsequently,nj is a number such that, simultaneously, 

z7Xjl(Tl) = '9 zlIj1(T.2) = O (1.14) 

i.e. n., 
rentia i 

or rather tr2n .2/x2 are the fundamental numbers of the diffe- 
equation (1.7)‘for ke boundary conditions (1.14). Since the 

variable r does not exceed l/(2 /3 + l), then the fundamental nuaber 
m2n.2/x2 can only be a negative number. 
mj & 

Let us introduce the real n&r 
y setting nj = in.; then tr2n .2/A2 = - m2ntj2/A2, where the index j 

take the values + 1, i 2, f 3, .i. We observe that II 
-i = - “i’ 

For the further study of the function f,(n) it is convenient to trans- 
fon equation (1.7) into a new form. 

Let us introduce, instead of z, a new unknown function u, by setting 

u = F(T)2 

and in place of r a new independent variable v by the formula 

v=‘-(zg+v & s TVi F (*) = [ 1--(2p+qt ‘/a 
(1 _ +3+1 

I 
7, 

lhe function U(V) will satisfy the equation 

where 
(1.15) dzu -- 

dv= 

1 d’F --= B(2P-P 1) T2 B (29 + 1) T2 + 2 (B + 2) t - 4 I _ dn’ 
F dv2 4 l--r ll-(2p+l)rj’ ’ fJ -4x2 
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Let us consider the solution of equation (1.15) for large 1 p 1. Accord- 

ing to a well-knom theorem in the theory of differential operators [ 4 3 , 
equation (1.15) has in each quadrant of the plane of the canplex variable 
p two fundmental integrals II (l)(v) and U(~)(V), which, for large Ip 1 and 

for v lying in the region of regularity of the function (l/F) (d’F/d v2 1, 

are represented by the following asymptotic fomulas: 

Hence it follows that, as the parsmeter p varies in each of the 
specified quadrants, there exist fundamental integrals z I11 wd zt2) for 

which the following asymptotic fonmlas hold: 

P (T) =&eB”[l+O(~)], e(2)(+)=~e-P”[1+0(~)] 
‘Ihis shows that in each of the specified quadrants there exist, for 

large ipi the following asymptotic representations of the integral znllf ) 
and its derivative: 

where 

Similarly, for the integral zn2(r 1 we have 

where 

(1.16) 

(1.17) 

Jfence we obtain the following asymptotic representations of the func- 
tions fifn), f2(nJ, f3(nf, f4b) for large Jp 1 or for large I ral in all 
quadrants : 

Starting from these foxmulas, ve can establish the convergence of the 
series which appear in fomlas (1.101, (1.111, and (1.12); using fom- 
ulas (1.16) and (1.171, we can also demonstrate the convergeuce of the 



444 L.N. Sretenskii 

series (1.8) and (1.9), which d f’ e me the strew function and the velocity 
potential. 

Let us now carry out the expansion of the functions f,(n), fz (n), 

f (n), 

B 

f,,(n) in series as regards the principal parts. We will start with 

t e function fl(n). 

The expansion of this function in series as regards the principal 

parts is 

fl (4 = &ti f$J (Ai+kj)Ej 

j--p, 

where the real number [j is determined by the formula 

+ = i[v]n_imj 

We observe that c$‘_;. = - tj. 

Let us rewrite the foregoing expression for flh) in the form: 

fl (4 = --Lj+2~~-+3- 
j=l 3 j--l 

n2 + mj2 
(1.18) 

Using the relation between the functions fl(n) and fu(n), we can also 

write down the expansion as regards the principal parts of the function 

fll(n): 

f4(n)=‘~)+2jj~-2~* 
j=l 3 j=l 

(1.19) 

Now let us expand the function f,(n) in series as regards the principal 

parts. Taking into consideration the asymptotic formula for f2 (n), we 

find after some minor transformations that 

where 

C Z& (71) 
h = (a / an) z,2(T1) 1 ll-i77lj p y-j= --rl’ I 

Similarly for the function f,(n) we obtain this expansion: 

(1.20) 

(1.21) 
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where 

i6j = 
[ 

z*I (52) 
(a / an) 2,1(73) I *-fmj 

4. Let us now take the formulas (1.10) and (1.12) and transform than 

into a new form, replacing therein the functions f,(n), f (n), f7 (n), 
fs(n) by their expansions (1.18), (1.19), (1.20), and (1.11). We obtain 

the following results: 

NOW replacing tj in the right-hand side successively by 7 j, cj, and 

shall have the new expressions respectively for 

let us return now to forrmlas (1.10) and (1.12) and substitute in then 

the expressions obtained for the swns under consideration. Bearing in 

mind the equations 

20; (71) 

201 N4) 
+ 

20; b.1) 
- = 0, 
202 (71) 

we obtain 

C- Ia 
- = 4r,h sin h(reS, - h csc h S,) 

12 

11- b 
- = 47,h sin h (ITS, - h csc ASa) 

11 

Cj + Oj 
xzmj2) sh zmj ’ 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

5. Formulas (1.22) and (1.23) can be reduced to an exceptionally 
sinple form in the case Azn the numbers r 1 and t 2 are close to one m- 

other. In order to obtain these new formulas let us take equation (1.15) 

and rewrite it in the following way, replacing n by im : 
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I.& u8 introduce in place of u the new independent variable 

E 9 E--y 

We observe that when the difference between r and r ? is not large the 

parameter Y’ is very mall. The last differeutia equation is rewritten * i 
in terms of the variable 5 as follows: 

$+[sa-~$$+o (8+) (1.26) 

Lt us calculate the integral of this equation under the following 

conditions: 

u (0) = 0, 
du 

(3 h J&fat) = 
1 

‘lhe original variable r can be expressed in terns of the ‘variable t 

in the form of the following series in powers of v’e/w: 

v.=‘51+ 
71 VG V’S -+... 

VI - (zg + 1) TI x 

By virtue of this we obtain 

f dzF 
-7 F dvd = a, + alv’t + a2PEa + . . . (%=[$~]_J. 

Hence we can rewrite equation (1.26) in the following way: 

-$ + s2u = -$ [a0 + alv’E + a,v’2ta + - - - ] u (E) (1.27) 

We shall seek a solution of this equation in the fon of a series in 

powers of the parameter v’; we set 

u (E) = uo (E) + v’4 (E) + v’% (E) + v’% (0 + - ’ * (1.28) 

In order to determine the co-efficients u,,(e), u1 (f), . . . we have the 

following system of equations: 

3+ s2uo = 0, $+ s2u1 = 0, 2 + s2u2 = 2 uo 

$gf + s2ug = f (aduo + aoulh $+s2u,=$ aOu2 + a&h+ a2E2u0h.. - 

‘Ihis system of equations has to be integrated under the following con- 

ditions: 

ug (0) = 0, q(O) = 0, u2 (0) = 0, UQ (0) = 0, uq (0) = 0, . . . 

u; (0) = 1, q’(0) = 1, u2’(0) = 0, us’ (0) = 0, Q’(O) = 0, . . . 

Integrating the system of equations so obtained under these conditions, 
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we have 

u. (E) = $ sin SE, Ul (E) = 9, ua (E) = -&[[SEcosse-sine] 

us (E) = - & [se cos SE - sin s;] 

u4 (E) = 8& ( 2re2a, - ai) E* sin SE- && ES cos SE + 

+ & ( 2n2a, - 3uoa) E cos SE - & (2a*u, - 3aos) ‘+ 

In this way the series (1.28) is constructed. let us find the nusber 

s from the condition that the solution (1.28) of equation (1.26) shall 

vanish uhen [ = R. 

The equation for the determination of s is written thus: (1.29) 

sin xs 01s - & [ns cos xs - sin KS]‘* - - 
4x%’ 

[ lrs co9 IIS - sin rcsj v’~ + . .I = 0 

when v’ = 0 this equation has the solution s = j, where j is au arbi- 

trary integer, lhe partial derivative with respect to s of the left-hand 

side of this equation differs from zero wheu v’ = 0 and s = j; consequently, 
equation (1.29) has a holasorphic solution uhen V’ =f 0; this solution can 

be represented up to and including second degree terms in v’ by the 

series: 

s = i + &$j a, V’S + . . . (1.30) 

ti the basis of the foregoing calculations, we cau write &mn u(c) in 

explicit foim thus: 

u,,i (E) = $ sin SE - &# (SE cos SE - sin SE) v’~ + . . . (1.31) 

bet us take equation (1.26) once again md find the integral of it 

which satisfies the conditions 

Let us set 

u (K) = 0, $(+=I 

r.~ (E) = uo (E) + V’UI (E) + v’*uz (El + . . . (1.32) 

In order to determine the new functions uo, ui, u2, . . . we shall have 

the previous equations, but the boundary conditions are different, naaely: 

240 (8) = 0, 4 (n) = 0, uz (x) = 0,. . . 

a,‘(x) = 1, ul’(Ir)= 0, u,‘(fc) = 0, . . . 

Under these conditions the new solution of equation (1.26) CM be 
constructed in the form of the following series: 
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un2 (E)= fsins(~~~)~~~~s(E~~)~~s~(i~~)~sin~(i~~)]v’~+... (1.33) 

We need to have the functions znl and zn2. These functions are connected 

with the functions usI and un2, which are given respectively by formulas 

(1.31) and (1.33) and satisfy the boundary conditions, by the relations 

Hence, using formulas (1.30), (1.31) and the relation 

s = -_i IN 
Xh 

we obtain the following result: 

azn] (5) “’ h(n) s[ cos se - sin SE 
- = 7 F (Q) dn 8’ 

-&TN3 - s2E2) sin SE - 3.~2 ~0s $1 v’~ + . . . 

Now, setting 5 = II and replacing s by the expression ( 1.30)) we obtain 

[ “nip) lnzimj = (-)j+ls’&+{l + &$- +. . .) (1.35) 

Making use of the second formula (1.33), we find by similar manipula- 

tions that 

[ ‘znip)]nsrmj =(-)j~#+-(1+~$-+4 ..} (1.36) 

The formulas (1.35) and (1.36) so obtained make it possible to find 

the numbers ~j, Pj’ 5j, “j, 
introduced in subsection 3. We have 

~j=(---)j~~~(l-~-$-+...) 

rlj = - 
2v F (9) --{I-$$+. . .) 
“‘2 h (-rl) 

c, = W' F(Q) 
7 --[l-2$+. ..) “‘2 h (72) 

wj =-2L ( ) 1--% ‘Ej = (_)j+12.$-~~{~-~2v! f.. .) 
T2 I-T, 

6. Let us now use these expressions to evaluate formulas (1.22) and 

(1.23). First of all we find the sum of the series S, for small v’. We 
have 

_ 7 (I%, + I) VP2 
240 + * . .) 

1 12U” + 1 
--vQ+. . .) 

60 
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Hence 

& = -&{fg+-gg,+ ‘~~.&’ $ E++#)+. . . (a) 1 

‘ihe expression for the sum of the series S,, as determined by formula 

(1.24) for small Y’, has the following form: 

&= &z(#+f~)_~” !%)+Lu)+... 
i 24.60 A2 h(-rz) 8 h (72) 

(6) 

If the nunber V’ is small, as we. are assuming, then the infinite sums 

S, and S,, determined by formulas (1.24) and (1.25), are significantly 

snaller than the sums S, and S,. 

Iherefore, substituting in formulas (1.22) and (1.23) the expressions 

(a) and (b) in place of S, and S,, and neglecting the terms containing 

the suns S, and S7, we obtain 

Bearing in mind the value of the function h(r ), we can transform these 
two formulas into the following form: 

(1.37) 

Let us take as our fundamental data in this problem the quantities 

rl’ 1’ 1 c; then from formulas (1.13) and (1.37) we can determine r *, I, 

and b. If we know the value of the speed of sound in the inflowing gas, 

then by the same token we have the value of the parameter a, and can 

therefore determine the velocity of the gas issuing from the orifice. 

If in formulas (1.37) we set p = 0. then we obtain the formulas relat- 
ing to incompressible fluid. 

In this case we have F(r 1 = 1. a0 = 0 and the foregoing formulas 
assume the following form 

c - 12 -=+q9-+P+ . ..) 
12 

II--b 
-+“‘(~__$/“+.,.) 

11 

These two equations express Zhukovskii’s theorem [6 1: 
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1*--b c - la -=- 
11 la 

It must be pointed out that this theorem is valid for incompressible 

fluid for arbitrary 7 1 and r2, and in this general form it cE.n be obtained 

from the complete formulas (1.10) and (1.12). 

II. Ihe pressure of a gaseous stream on a flat plate 

7. The method described in the previous section can be used to solve 

the problem of a jet flowing past a flat plate under the assunption that 

the point of zero velocity, occurring at the plate, is replaced by a 

wedge-shaped region of stagnant fluid [ 7 1. 

Accordingly, let us assune that a stream of gas, having a velocity at 

infinity of V2 and a width of 2 L, impinges on a plate of length 21, dis- 

posed symaetrically relative to the gas stream. Let us further assune 

that the stream separates from the ends of the plate with free stream- 

lines, and that it also forms, at the middle of the plate, a stagnant 

region along the curvilinear boundaries of which the particle velocity 

of the gas is constant and equal to Vi. ‘lhis stagnant region replaces the 

point of zero velocity which usually occurs at the centre of the plate. 

&r problem consists in determining the pressure of the stream on the 

plate and in finding the various geometrical quantities connected with 

the flow pattern under consideration. 

Fig. 4. Fig. 5. 

In Fig. 4 the streamline CF and C’F’ are symnetrically disposed re- 

lative to the axis Ox and enclose the whole moving mass of gas; the 

stremnlines DE and D’E’ spring from the ends D and D’ of the plate; the 

parts BC and BC’ of the complete strecnnlines A BCDE and A B C’D’E’ re- 
place the point of zero velocity. ckr the streamlines DE and D’E’ the 

velocity of flow is constant and equal to Vz; on the streamlines B C, 
B C’ , the velocity is likewise constant and equal to Vi < V2. 

Iat the streanline A BCDE correspond to the zero value of the stream 



On the theory of gaaeoua jetr 451 

function +(r , 8), and the streanline CF correspond 
stream fuoction equal to Q > 0. 

to the value of the 

Let us denote by 8, the angle which is formed by the direction of the 
divided jet with the &is of x; this quantity is u&noun. In Fig. 5, re- 
presenting the plane of Qlaplygin’s variables, the flow occupies the 
region A BCDE FCA , inside which we require the integral of the equation 

with the given values of I) on the contour of this region. 

We will seek the function +(r , 19) in the form of the following infinite 
series: 

(24 

where the co-efficients A,, are to be determined, and the function z,(r ) 
is the integral of the equation 

(2.3) 

and satisfies the following requirements: 

lhe coefficients Aa have to be found fran the conditions: 

A, sin 2ne = 
Q (0 < 5 < %) 

n-i 0 (tb<o< +=) 

We find that 

A 4Q 
n = ;;;;- six? nf$ 

Accordingly, for the stream function $(r, 0) we obtain the following 
expansion : 

(2.4) 

Hence we derive the following expression for the velocity potential: 

o(f,e) =c- 
4Q+ 

= (1 
i 

sina n0, 2,‘ (7) 

-30 _l nn 2% (vz) 
cos 2 ntI (2.5) 
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8. Let us now calculate the lengths OC and CD 

the formulas obtained in the previous subsection. 

of the plate, using 

To calculate the length OC , we observe that along the streamline BC 
the following formula is valid: 

dy=---- sin0 i3p d0 

YZG a0 

Integrating both sides of this formula with respect to 8 from 0 to 

l/2 s, after rep1 acing r by r 1, we find with the help of formula (2.5) 

that 

Along the segment CD of the plate, we know that 

Integrating both sides of this equation with respect to the variable 

I from r1 up to r2, we obtain: 

CD= Aa i ‘-z+ “y;f; [dj__?___ %I_!!!+ 
7% 5, dv .(I - T)B dT T 

??=I 

or, effecting the integration, 

Cinnbining the formula so obtained with formula (2.6) and making use of 

the relation 

aJ (_)n-’ 

nzl 4ne- 1 
sin2 n0, = + ?t sin2 +f& (2.8) 

we find that 
al 

21 = 
32Q 

x1/-Gz(l__72)P Fin 2 
* v3,+r,~-- (-)“-’ “, (71) si*a neo 

_I ha - 1 z,(n) 

(2 9) 

9. Let us calculate the magnitude of the pressure of the stream on the 

plate. We shall denote by p2 the pressure at infinity in the region of 

stationary gas behind the plate, and by p1 the pressure of the gas in the 

stagnant region in front of the plate. lhen the resultant R of the pressure 

forces of the gas on the plate is 

R=2 pdy-2p2CD+2(pI-ppz)OC 
s 

CD 

(2.10) 
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R=2 
s 

pdy-2pJ 4-2~~ OC (p=&c$lBfl> 
CD 

Along the segment CD of the wetted area of the plate we have 

Hence we obtain 

5 p&i = 
co (-)-I sin*&, ” (1 - T)P+~ d T2n’ (5) dt 

n2 2, (72) s v; 
CD 71 

-z (L--T)@ 

But 

3 (1 

I 
-.)@+I d =,,’ (7) 

I/r 
m-&z 
d-c (I - T)@ 

& (I - 72) & iI-4 zn (72)l + 
7% 

and therefore 

CD 

Let us now evaluate the expression for R in formula (2.1Q); we event- 
ually obtain the following result for R: 

R 
8Q(B +I) 70 

= (1 - T1)s+1 
Za sin2 + B0 pl (2.11) 

Accordingly, the problem which we formulated has been solved. Given 
the quantities r 1 r 2, 2 and Q, we can calculate the angle 8, from formula 
(2.9), and the 1Agth of the wetted portion of the plate from formula 
(2.7); then the magnitude of the pressure of the stream upon the plate is 
given by fonuula (2.11). 

10. From the formulas of the foregoing subsection let us recover 
Chaplygin’s results for incompressible fluid in the flow pattern under 
consideration. 

In this case we have 

Let us evaluate formulas (2.6) and (2.9): we obtain 
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(2.12) 

(2.13) 

where 

71 
9=-g= iq ( > Irl a<l 

For incompressible fluid we have 

where pO is the stagnation pressure, pi is the pressure at velocity V1. 
By virtue of these formulas we find that for incompressible fluid 

Hence, formula (2.11) assumes the form: 

R = 4QpV9 sin2 f 0, (2.14) 

The collection of formulas (2.12). (2.13) and (2.14) in fact solves 
the stipulated problem of jet flow of an incompressible liquid. From these 
formulas we can eliminate 8, and obtain the Chaplygin formulas In the 
case when the incident stream has Infinite width; in that case Q = m. It 
is evident from formula (2.13) that, when Q tends to infinity. the angle 

%l approaches indefinitely close to zero. Let us investigate the law 
governing this approach to the zero limit. For this purpose let us find the 
sum of the infinite series in formula (2.13) for small 8,. We have 

g (-1 n-ln 1 + q*n 
n=l 4na-I l-q*” 

sina &lo = - $ In CO9 8, + eo" 4 g;y; s •t 

+ z Bo2 2 (-)“-‘n3 q2* sin 2 nB, 
,i, 4ns-i 1--q2nT 

Hence it follows that for small 8,, 

2, 4n2 
O3 (-)“-‘n I + (1** qinZ neo = $ + 2 2 (-)n-lns q** 0,’ 

- 1 1 -q2n c n=l 4nz - 1 1 - q** I 

Now, for small 8, formula (2.13) gives the following result: 

QoOZ = 
2nlVz 

x+4+64s’ 
s = 5 ‘;;;“I:““, q2n 

tl=1 - q2” 



we obtain the Chaplygin results [ 7 I : ” 

R= 
2xplVe’L 

L + 4 + 64s 

Let us consider one more particular case. 
of zero velocity is absent from the front of 
number q is equal to zero and formula (2.13) 
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Substituting this expression for Q8: in formulas (2.12) and (2.14). 

Let us assume that the region 
the plate; in this case the 
takes the following form: 

21=32Q 
xv2 

1 asin 1 0 + 
B r'o 

or, after summing the infinite series, 

n=l  4n2 - 1 FinI neo 5 (-)-‘n . 2 1 
24 L=- 
nV2 [ 

xsin2 - : B. + sin 6, In tg (F + $)] 

Using this equation to determine 8, from I, Q and Vz, we obtain from 
formula (2.14) the pressure of the stream on the plate: 

R= 
2xpIV22 

X + c&! '/2 0, In [(l f sin O,)/( 1 - sin O,)] 

This expression for R agrees with that obtained by Zhukovskii [6 I, 
section 10. 

11. kt us now return to the general formulas of subsections 8 and 9 
and find the geometrical dimensions and the force R for the case when the 

velocities V, and V2 are close to one another. 

For the analysis of formulas (2.6) and (2.9) we need to consider the 
dependence upon n of the tvm functions: 

1 2; (T?) 
z,’ a, 

B& these functions have been calculated: they are the functions flh) 
f?(n) (see subsection 3) when X = l/2 R. Rv virtue of this we can use the 
&alysis already presented and write down the expansion of these functions 
as regards their principal parts: 

where 

Cjmj 
2,* (72) 

2n(r*) 

_ 20~o;~~ I 2 f $ _ 2 $ 

j=l j=l n2+ *j2 

(2.15) 
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Let us substitute these expansions in formulas (2.6) and (2.9), ob- 

t aining 

OC= 
16Q-h 

)/Zaq(l --71)@ 
X 

X I 
(2.16) 

If the velocities V1 and V2 are close to one another, then these two 

last formulas are appreciably simplified. These simplifications arise by 

virtue of the fact that, for values r 1 and r .2 differing only slightly 

from one another, the numbers sj are determined by the following formula 

(see subsection 5) : 

mj2. G;l (i=*l. *2, f3,...) 

which shows that all the m., starting from ai and m_‘,, are very large for 

small V’. Hence it follows’that the two last infinite suns on the right- 

hand sides of formulas (2.16) and (2.17) can be neglected. However, by 

virtue of the formulas at the end of subsection 5, the sums 

take the following values respectively: 

if we retain only the first teims in the expansions in powers of the 

small difference r 2 - r 1. 

Hence, fran formula (2.17) we obtain 

I= 
4Qrz sir+/& 

II - T2)91/2ar2 Q - T1 (2.18) 

let us now take formula (2.11) and substitute therein for sin* l/2 8, 

its value from the last formula; we then obtain an expression for the 
pressure of the stream on the plate for values of r 1 and r 2 which differ 
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only slightly: 

We observe that, by retaining only the first power of the difference 

‘2 - ‘1’ we cannot distinguish between the lengths OCand I. 

Formula (2.18) can be used to determine the angle 8, of separation of 

the jets to infinity. 

III. Flow of a gas out of a vessel 

12. The partial differential equation, which is satisfied by the stream 

function 1)!0, r 1 in plane-parallel potential motion of a gas, has the 

following form: 

a 27 ad, - -- 
ar ( (1 - T)@ 1 

+ 
f-(28+1)7 a’+ () -= 

a7 27 (1 - .)@+l 832 
(3.1) 

In order to construct solutions of problems on jet flows of a gas, 

Chaplygin found a number of particular solutions of equation (3.1). How- 

ever, for the solution of the problems we mean to consider in this 

section, it is necessary to find other particular solutions of the sane 
equation (3.1). 

We will seek particular solutions of equation (3.1) expressible in the 

fonn of a product of two functions Q (0) and 7% 1, each depending upon 

only one argument. Substituting the product 0 (191 7% ) in place of the 

function 1// in equation (3.11 gives the following result: 

Let us equate the convaon value of the right and left-hand sides of 

this equation to a certain negative number - n2; then, in order to deter- 

mine the unknown functions 8 and T, we get the following equations: 

dW d 
~-n%=o, - 

d7 + na 
i-t2!3+11r T=-J 
27 (1 - .y+1 (3.2) 

‘lhe first equation can be integrated in hyperbolic functions, and its 

general integral can be written thus: 

@=Achnfl+BshnB (3.3) 

Integration of the second equation can be achieved in tens of the 

hypergeometric series. Let us set 

T = T*/:niS (T) 

then for the determination of the function S(r 1 we get the following 
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equation, due to Gauss: 

7 (1 -T) s + [(1 + ni) + (p - 1 - ni) T] $ + f i pn (1 + ni) S = 0 

‘lhe solution of this equation is the hypergeometric series F(a, b, c; 
r ) with the parameters a, b, c defined by the formulas 

a+b - nl - ’ PI ab = - f i/3n (1 + ni), c=l+ni (3.4) 

Accordingly, the second equation (3.3) has the particular solution 

T= $ 
(.> 

‘hni F(a, b, c; T) 

Here r2 is an arbitrary constant number. 

Proceeding in a similar manner, we find that equation (3.2) also has 

a particular solution of the following form: 

where the parameters a, 6, c of the new hypergeanetric series are deter- 

mined by the equations 

a + 5 = -.- ni - p, a6 = + ij3n (1 - ni), C=1-ni (3.5) 

By means of the particular solutions T and T, let us now form new 

particular solutions 7” and 7” of equation (3.2), setting 

T’= ;(T+T), T”=$(T--T) 

‘Ihese particular solutions can be expressed in the following form: 

T’ = M (7, n) cos @-Nina)--N(r, n)sin~Fnln~) (3.6) 

T” = M (r, n) sin (k nlnz +N(r, n)cos($nInP) ) 

where the functions M(r , n) and N(r , n) are two functions of the variables 

r and the parameter n, expressed by the following series: 

M(- n)=1+p,(n)~fpz(n)9+... 

(3.7) 
N(s, n)= [q,(n)~++42(n)r2+...ln 

Axe p1,‘p2, . . . , qI, q2, . . . are rational functions of the parameter n, 
containrng in therr expressions only even powers of this parameter. 

Let us write down the expressions of the first few of these functions. 
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We have 

Pl(4 = 09 !I,(4 = -:s 

pz (n) = “&;y) p, cl2 (4 = 
2 (y+1)--n2(1+*/2N 

2 (n2 + 4) 
B 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13. Let us consider a vessel bounded by two parallel walls, extending 

in one direction to infinity and supplied with a nozzle, formed by two 

small and equal straight segments of wall, inclined to the centre line of 

the vessel and joined to the free ends of the parallel walls mentioned 
above (Fig. 61. From this vessel, gas issues under pressure in the form 

of a jet into free space. Our problem consists of constructing the stream 

function of this gas flow*. 

Fig. 6. 

Lt us assume that the value of the stream function I) along the line 

of symaetry FE of the stream is q > 0, and along the compound boundary 

A BCD , including the free surface of the jet CD, is zero. Let us further 

assume that in the distant part of the vessel, from which the gas is 

coming, the value of the variable I is given and is equal to r 1; let us 

assume, moreover, that at the points of the free surface of the jet the 

variable r has the value I 2 < r 1. 

At the point B the velocity of the gas is equal to zero, and this 

circumstance introduces a well-know complication into the given problem. 

In order to avoid this difficulty we will first solve a somewhat altered 

problem, obtained by replacing the critical point of zero velocity by a 

region of stagnant gas B’B B”, along the curvilinear boundary B’B” of 

which the variable I has the small value r ‘. 

l S.V. Fal’kovich solved the problem considered here by dividing the 
region of flow into two parts; in one part, containing the jet and the 
point of zero velocity, the stream function is given by a series of 
functions zn(r ); in the other part, containing the remainder of the 
pipe, the stream function is expressed as a series, the general term 
of which contains the second solution of the hypergeometric equation 151. 
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Let us now consider the range of variation of the variables in the 
plane of @ and r corresponding to the gas flow under consideration 
(Fig. '7). This region is the rectangle A B’B”CDEF, 

bounded by the straight linesr=r',8=h,r=r2,8=O;hereAisthe 
angle of inclination of the wall segment BC to the axis OX. 'lhe required 
function $48, r) has .to satisfy equation (3.1) and the following boundary 
conditions on the sides of the rectangle under consideration 

+=o when7 =Z', 

Fig. 7. 

+=O whene=Oand +<T<q, f$=fJ when e=o and ~<T<Q 

In order to find the function $(@, r), let us consider this particular 
solution of equation (3.1): 

&,;-: A,,Tn(z) shn(h-6) 

If we subject the function T,(r) to the conditions 

Tn$‘) = 0. Tn (4 = 0 (3.8) 

then the function $ 
upon the function 4'~ 8, '1 

will satisfy all the boundary conditions inposed 
T 1, apart from the condition on the side 8 = 0. In 

order to satisfy this condition too, let us form a series with indeter- 
minate coefficients A : 

n 

4 (0, T) = ? AS”, (7) shn (A - 0) (3.9) 

susaaing over all the fundamental numbers n of the equation (3.2) which 
satisfy the boundary conditions (3.8). 

T1l0 fundamental functions T,,(t 1 and T1(f > of the equation, correspond- 
ing to tro different fundamental numbers n and m, satisfy the integral 
relation: 

T* 1 - (23 + 1) 7 

s ~, 2s (1 - .p+1 
T, (7) T,,, (T) dr = 0 

Let us assuae, in addition, that 
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T* 1 - (28 + I)7 

s 20 (1 - ,p+1 
[T,(r)]2dr = 1 

7’ 

(3.10) 

& the basis of these conditions of orthogonality and generalised 

normality of the functions T,(r ), we can determine the coefficients An of 

the series (3.9). Let us set 8 = 0 in this series and, multiplying both 

sides by 

1 - (25 + 1) T 

27 (1 - 5) Pfl 

let us integrate the result with respect to r from r ’ to r 2. Taking into 

account the boundary conditions imposed upon the function $(8, T ), we 

find that 

Making use of the differential equation (3.2), we can effect the 

quadrature and in this way obtain for A,, the following expression: 

Accordingly, the series which is the solution of this preliminary 

problem can be written thus: 

(3.11) 

Using this series, we can calculate all the elements determining the 

motion of the gas. 

14. In order to solve the problem originally formulated, when instead 

of the stagnation region BB’B” there is a single stagnation point B, we 

have to let the number r ’ in formula (3.11) tend to zero.To achieve this 

passage to the limit, we have to record certain intermediate propositions. 

Let us first take equation (3.2) and transform it to a new form; in 

place of the independent variable r and the function 7% 1 let us introduce 

the new independent variable z and the new unknown function u(z), by 
setting 

We then obtain the following differential equation: 
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We observe that for subsonic motion of the gas the nnmerator of the 
second term in the square brackets is positive. 

In accordance with the boundary conditions (3.8) we have to consider 
those integrals of this equation which satisky the following conditions: 

u?l(O> = 0, un(z’) = 0 (3.13) 

where the zero value of the variable z corresponds to r2, and the value 
Z’ corresponds to the value r ’ of the variable r . 

From the formula determining t from t it follows that, as r ’ tends to 
zero, the quantity z‘ will tend to infinity, and accordingly the secard 
boundary condition (3.13) has to be satisfied for very large values of 
the independent variable z. Using the theory of asymptotic representations 
of integrals of linear differential equations, it is possible to give 
approximate values for the fundaaental nrnabers of equation (3.121, corres- 
ponding to large values of the wtity z’; we have 

n. = ti 
3 2’ (i = 1,2,3, . . .) (3.14) 

Hence we see that the difference, between trso successive fundamental 
nunbers n appearing in the series (3.11), is equal to s/z’ and conse- 
quently tends to zero as z’ tends to infinity. l3y virtue of this fact we 
can assume that, as z’ + m , the sum (3.11) will tend to a certain definite 
integral. In order to construct this integral we shall need to consider 
in somewhat greater detail the general term of series (3.11). 

The function T,(r 1, appearing in the general tens of this series, CBn 
be represented in terms of particular solutions (3.6) of the equation 
(3.3) in the following way: 

where the coefficient C, has to be determined from the condition (3.10). 
Let us present this condition in a new form, introducing in place of the 
variable of integration r the new variable (I, by putting 

O&Ins 

We obtain _, 
-r ’ 

a’= $]n$ 

“’ 
s 1 - 

(1 
- ~2 (26 726 -7 f 1) P+l ev2’ [Tn(a)]2du = 1 

0 

(3.15) 
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We observe that the expressions for the functions T,,‘(r I and T,,-(r ), 
terms of the new variable u, are 

T’= [I + pI (n) ~#-2~+ . . .] cos na --II [ql (n) T2e-zJ+ . . .] sin no 

T”= [l+p,(n)qe+@+. . .]sinna+n[q,(n)r2e-2a+ . ..]cosno 

Hence we obtain 

T, (a) = C, {[TR’ (TV) + u1e-20 + u2e-Oo + . . .] sin no - 

- [Td(r2) + ble-20 + b2e-40 + . . . ] co9 no} 

where aI, a2, . . . . b,, b,, . . . are completely determined coefficients de- 

pending on the number n. We can now, moreover, write, 
(3.16) 

[T,(s)12 =Cn2 (k [M2 (TV, n) + IV2 (TV, n)] + kIe-20 + kae-@ + . . . + 

+ (IO + 4e-2a +...)cos 2nu + (mO + mle-20+...)sin2na 
1 

where k,, k,, . . . . I,, I,, l,, . . . . no, ml, m2, . . . are certain numbers 
depending on the parameter n. 

We can also write down the 

1 - ~~(28 + l)eS2’ 
1 - qe-2”) P+l 

following expansion: 

= 1 + Ale+' + A,e-da+ . . . 

Now, the condition (3.15) can be written thus: 

1 
Ca’a L [ MB (T.2, n) + N2 (T2, n)l { d3 + ,zI Bj i e-2Wa + 

0 0 (3.17) -n 

+ zocj 
where Bj, Cj, Dj are 

0' 

a’ 

1 e--2ja cos 2ns du + ,zo LIj ie+ja sin 2na do 
0 0 

completely determined numbers. We have 

e' 

s do = a’, 
s 

e-b do = & (1 _ e-W) 

0 0 
0’ 

c 
e-2ja cos 2no ds = e 

-2ja’(n sin 2na’-_i co9 2nd) + i 

0 
2 (p + ny 

a’ 

s 
e--2jo sin 2na da = n - e 

--2ja’ (i sin 2nd + n co9 2nd) 
2 (j’ + n2) 

0 

From these formulas it follows that the relation (3.17), from which C,, 
is to be determined, can be rewritten thus: 
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1 
v-2 - 1, [Jf2 (52, n) + Iv2 (7.2, n)] 0’ { 1 + L (0’)) 

where the functions L(o’) are certain functions of O’ which tend to zero 
as u’ tends to infinity. 

Accordingly, the functions Tn(r ) appearing in the series (3.11) can be 

written thus: 

where 

L(7) = 
8 (v) 

VW (70) + Na (72, n) 1/ 2- 1 

71/l + L(d) 

8 (r, n) = Tn’ (72) Tn” (T.) - T,’ (72) Tn’ (T) 

Now the series (3.11), which was the solution of the preliminary 
problem, can be written so: 

$(fl, T) = $ T {& d9g; n, - (1 2T;,)o da: “‘) x - 

Xshn(h-O) 
(3.18) 

8 (7. n) 1 
nz sh nh iW2,4+ N* h n) 1 + L (0’) 

Here it is necessary to make one important remark concerning the nota- 

tion: the function O(r) n) depends on the quantities r and I but when 

we write c!O(r,, n)/dsI and cM(r2, n)/dr2: we mean to sihify tkk values of 

the derivative de (r , n)/dr evaluated at r i and r 2 respectively; accord- 

ingly, r 1 and r 

not subject to 

~~fwh:~~trh;~~;. in the function O(r , n) as parameters, are 

Between the nunbers r’, z’, 0’ there exist the following relations 

z) = 
” d7 s J z l-(43 +I)7 ) 

I-7 
Q’ = 5 ln ZJ 

7’ 

From the first relation we obtain 

z’ = + In $ - $ (B + 1) (T2 - T’) + . . . 

Hence it follows that for small r’ we can take z’ = 0’. 

0y virtue of this fact, the fomnrla (3.18) for the stream function can 

be rewritten in a new form; taking into account the connection (3.14) 

between nj and I’, we have 

An+=> 

According1 y , we obtain 
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8 (T, n) An 

’ M2 (TV, n) + N2 (72, n) 1 + L (0’) 

Let us now pass to the limit, when the number r ’ 

limit we find the following expression for @, r ): 

tends to zero. In the 

x shn(A-0) 8(7, n)dn 
n2 sh nh 11f2 (-c2, n) + N2 (TV, n) 

(3.19) 

E5y means of this formula we can find the contraction of the jet and 

the pressure of the gas stream on the sides of the nozzle. 

Let us turn to Fig. 6 and find the connection between the ordinates 

of the points C and D; let us denote these ordinates by - H and - h, 
respectively. 

We have the following general formula of the Chaplygin method: 

where p0 is the density at that point of the gas stream where the velo- 
city of the gas is equal to zero. 

Let us apply 

obtain 

this formula to the arc CD of the streamline (r = 0; we 

dz= La(%) 
)’ 2aq (I- ~2)~ aT 

Hence 

dy = + 2T2 (3) 
v hT2 (1 ---2)p a7 sin 9 de 

T=+, 

and consequently 

sin 8 de 
7-T* 

Substituting in the right-hand side of this formula for the function 
$(0, I 1 its expression in the form of the integral (3.19) and carrying 

out the calculation, we arrive at the following result: 



L.N. Sratanrkii 

X 
sh nX - n sin nh i 
np (I + n*) sh nh M‘J (~2, n) + IV’ (SS, n) 

(3.20) 

15. Let us apply these formulas to the case of the flow of an incom- 
pressible liquid. 

Ih this particular case /? = 0 and equation (3.2) has the following 

integrals: 

T’ = cos $nln $ 
> 

, T”=sin(+nln~) 

and therefore 

8 (7, n) = sin 

271 da (71, n) 272 da (72. n) 

(1 - TI) 
D (/71- (1 - 72)’ 

-=n [i-cos(+nln$)] 
dTp 

Let US now evaluate formula (3.19); we obtain 

O” I- cos pn sh n (A - 6) +@7)=:\ n 
shnh sin($ nln:)dn (3.21)~ 

where 
0 

and Vi is the velocity of the liquid in the remote parts of the vessel, 
whilst V2 is the velocity of the liquid in the jet. 

From formula (3.21) we easily find the expression for the complex flow 
function IU(U) of the complex variable a, introduced by the formula 

Be obtain 

Hence we find, on carrying out the quadrature, that 

1 
H sh =+ sch 

x (P + 4 sch = (P - 4 
ZA - 2h 1 

(3.22) 

From these formulas we find the relation between H and h, thus: 
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a 

Substituting herein the expression (3.22) for dv/&, and taking u = 
i(6 - A). we obtain 

0 

This integral can be c&Mated when A = l/2 n, and we obtain 

H-h 2 
-= -shparcttg h z 

Xf in place of p we introduce the new parameter y, by setting 

then we put the foregoing formulas .into the following form: 
H 4 Y 
-K=‘+G-th.2y 

bet us introduce here in place of h the quantity 2L. equal to the 
width of the vessel; we then obtain the formula given by Zhukovskii: 

From this formula we can. given B and L, determine the number y, and 
hence the velocity of flow in the jet, if the velocity of the liquid in 
the remote parts OP the vessel is known. 

16, ‘Ihe problem of the flow of gas out of a vessel, which was solved 
in the foregoing subsection, is equivalent to the problem of the motion 
of gas through a grating consisting of bars of equal size. Let us suppose 
that X = l/2 R, then we have a segnent of the flow past a regular grating 
with jet formation (Fig. 8). 

Along a bar of the grating we have 

dy = - 1-((28-I.$1) a+ d7 --- 
27(1 -,)@+I 36 1/2ar 

In order to determine the pressure P, acting on each bar of the 
grating, we use the formula: 

p = p. (1 - r)@+l 
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Fig. 8. 

Hence we obtain for P the following formula: 

Sbstituting here in place of $(6, 11 the expression (3.191, we obtain 

Consequently, 

00 

p _ %w ‘c2 (I- 72) 

\ 3T m; 

1 dn 

’ n (n2 + 1) sh I/ gxn Ma (7%. n) + A?2 (72, n) 
+ 

where 

x r @I, % n) 
1 dn 

n (9 + 1) sh l/ gcn M2 (72, n) -I- iv" (72, n) 
(3.23) 
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In equation (3.23) let us effect 

r’ we have 

T’ = cos ( 
fnlrl~ ( 

1 

the passage to the limit; for snail 

T’ = sin 
( 
+ZlllT$ 

) 

Q(‘5’, n)= sin +nln3), 
da (T’* n) 

dr’ 

Hence the second tezm of formula (3.23) can be rewritten thus: 
co 

4p,qlim s i - cos (l/zn In 7$?/ 7,) 

x fl?ii 7’10 
(n2 + 1) sh 1/2 an 

x 

0 

Let us calculate the definite integral 

Hence it is clear that the quantity (3.24) has the following sinple 

value: 

$& *(;/$-i/F) 

Let us now turn to forrmla (3.23) ; we can now recast this formula in 

the following final fonn: 

(3.25) 

dn 
n (n2 + 1) sh l/znn M* (~2, n) + Na (~2, n) 

For incompressible fluid this integral can be evaluated, and we then 

obtain the following formula for the pressure of the stream on the bar 

of the grating: 

P+p- V,) ( $f-(Vl + V,) arc tg 2 + + PV1 (Vr - Vl) - PI} 

where pi and p2 are the pressures in the stream in front of the grating 

and in the jet, respectively. If we deduct from this value the back- 

pressure, acting on the bar from the side of the stagnant fluid and equal 
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to 2L!4 - mp,, then we obtain Zhukovskii’s formula: 

P--2@ - H) pz = 2pLV1Vz S&- - 1 
> 

17. ‘lhe problem of the flow of incompressible fluid out of a vessel 

into a pipe was first solved by Zhukovskii; we intend to solve this same 

problem for a gas. ‘lhe configuration of the problem is illustrated in 

Fig. 9. 

Y 

Fig. 9. 

Gas from an infinite vessel, in the remote parts of which it is at 

rest, issues under pressure from the orifice BB’, forms a short length 

of free j et bounded by B C and B'C' , and then enters an infinitely long 

pipe C C’D D' . 

Let us assume that along the free surfaces Chaplygin’s variable r has 

the value r *, and in the remote parts of the pipe the variable r is equal 

t”Zer !i<ner I* 
Let us assume that the value of stream function ($6, r ) along 

BCD is zero, and along the line CE is equal to 9 > 0. 

Let us consider in place of the function $(l(e, r ) the new solution of 

equation (3.1) - the function Y(6), r 1, connected with $I(e, r ) by the 

formula 

The new function W8, r 1 will satisfy the boundary conditions: 

Y=O for 0=$x 82 O<S<r, 

YA(L+) forT=T2&o<e<+-- 

y (0, 7) = [ 
-q when TI<T<TZ and 8=0 

0 when0 <T<TI and 0=0 

The required function ¶J(e, r ) can be represented in the form of a sum 



On the theory of garcoas jetr 471 

of tm functions Y11:(8, r) and rp2(8, r), defined by the formulas: 

This last function can be obtained from formula (3.19) by replacing q 
by - q and setting X equal to l/2 n. 

18, Let us assume that gas issues from the open end of a pipe, at the 
far end of which the gas velocity is VI; on issuing fraa the pipe, the 
gas impinges on a plane C'BC and flows along it, forming free streamlines 
ED and E’D’ (Fig. 10). 'Ih e velocity of flow along these lines is constant 

Fig. 10. 

and equal to V2 > Vi. ‘Ihe construction of the stream function for the 
gas flow can be effected in this case also by using formula (3.19). 

Applying Chaplygin's function z,,(r), as in the previous problem, we 
can write down an expression for the stream function in the following 
fonn: 

4q + $?I@) 
(I, (e, T) = - 

sin 2n0 

7s ,“=,gGfr?J + 

8 (T, n) dn 

Ma (78, n> + N” (T&t%) 

‘Ihe sign ' (prime> in the sum indicates that the index of summation II 
can assume only odd values. 
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